Printed Pages:02

Paper Id: 199311

	 		Sul	oject	Co	de:F	AS:	301
Roll No:								

B TECH (SEM III) THEORY EXAMINATION 2018-19 MATHEMATICS-III

Time: 3 Hours

Total Marks:70

Notes: Assume any Missing Data.

SECTION - A

1. Attempt ALL parts of the following:

 $7 \times 2 = 14$

- a) The function $f(x) = e^x(\cos y + i \sin y)$ is holomorphic or not.
- b) Find the residue of $\frac{z^2}{(z-1)(z-2)^2}$ at polez = 2.
- c) Formula of Measure of Kurtosis β_2 =
- d) The first three central moments of a distribution are 0, 15,-31. Find the moment coefficient of skewness.
- e) Obtain the function whose first difference is $9x^2 + 11x + 5$.
- f) Find the normal equation of a curve $y = ax + bx^2$
- g) Let $f(z) = u(r, \theta) + iv(r, \theta)$ be an analytic function. If $u = -r^3 \sin 3\theta$, then find v.

SECTION - B

2. Attempt any THREE parts of the following:

 $3 \times 7 = 21$

a) From the following table of values of x and y, obtain $\frac{dy}{dx}$ for x = 1.2, 2.2, 1.6.

				\$200	· · · · · ·	a .		
<i>x</i> :	1.0	1.2	1.4	1.6	1.8	2.0	2.2	
<i>y</i> :	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250	A

- b) Using Runga-Kutta method of fourth order, find y(0.8) correct to 4 decimal places if $\frac{dy}{dx} = y x^2$, y(0.6) = 1.7379, taking h = 0.1.
- c) Using complex integration method, evaluate $\int_0^{2\pi} \frac{\cos 2\theta}{5+4\cos \theta} d\theta$.
- d) The equations of two regression lines, obtained in a correlation analysis of 60 observations are:

5x - 6y = 24,768x - 100y = 3608. What is the correlation coefficient? Show that the ratio of coefficient of variability of x to that of y is $\frac{5}{24}$. What is the ratio of variances of x and y?

e) The pressure of the gas corresponding to various volumes V is measured, given by the following data:

V(cm ³)	50	60	70	90	100
$P(kg cm^{-2})$	64.7	51.3	40.5	25.9	78

SECTION - C

3. Attempt any TWO parts of the following:

 $2 \times 3.5 = 07$

- a) Find the unique polynomial P(x) of degree 2 such that: P(1) = 1, P(3) = 27, P(4) = 64, use Lagrange method of interpolation.
- b) Using Simpson's $\frac{3}{8}^{th}$ rule on integration, evaluate $\int_0^6 \frac{1}{1+x} dx$
- c) Expand $\frac{1}{z^2-3z+2}$ in the region 1 < |z| < 2.

4. Attempt any *TWO* parts of the following:

 $2 \times 3.5 = 07$

a) If the probability of hitting a target is 10% and 10 shots are fired independently. What is the probability that the target will be hit at least once?

b) A die is thrown 276 times and the results of these throws are given below:

No. appeared on the die	1	2	3	4	5	6
Frequency	40	32	29	59	57	59

Test whether the die is biased or not. [Tabulated value of χ^2 at 5% level of significance for 5 degree of freedom is 11.09]

c) By Residue method, find the inverse Z-transform of $\frac{z}{z^2+7z+10}$

5. Attempt any TWO parts of the following:

 $2 \times 3.5 = 07$

a) The following data regarding the heights (y) and weights (x) of 100 college students are given:

$$\sum x = 15000, \sum x^2 = 2272500, \sum y = 6800, \sum y^2 = 463025, \sum xy = 1022250$$

b) Solve $x^3 - 5x + 3 = 0$ by using Regula-Falsi method correct up to four decimal places.

c) From the table, estimate the number of students who obtained marks between 40 and 45.

Marks:	30-40	40-50	50-60	60-70	70-80
No.of Students:	31	42	51	35	31

6. Attempt any *TWO* parts of the following:

a) Find the residue of $f(z) = \frac{z^3}{(z-1)^4(z+2)(z-3)}$ at its pole and hence evaluate $\int_C f(z) dz$, where Cis the circle $|z| = \frac{5}{2}$

b) Determine the largest Eigen value and corresponding eigen vector of the matrix

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
 till three approximation.

c) Verify Cauchy theorem by integrating e^{iz} along the boundary of the triangle with the vertices_ at the points 1+i, -1+i and -1-i.

7. Attempt any *TWO* parts of the following:

 $2 \times 3.5 = 07$

a) Use Picard's method to obtain y for x = 0.2. Given: $\frac{dy}{dx} = x - y$ with initial condition y = 1when x = 0 correct up to four decimal places.

b) In a normal distribution, 31% of the terms are under 45 and 8% are over 64. Find the mean and standard deviation of the distribution. It is given that if $f(t) = \frac{1}{\sqrt{2\pi}} \int_0^t e^{-\frac{1}{2}x^2} dx$ then f(0.5) =0.19, f(1.4) = 0.42

c) Prove that $hD = -\log(1 + \nabla) = \sin h^{-1} (\mu \delta)$